Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract While there is a diversity of approaches for modeling phytoplankton blooms, their accuracy in predicting the onset and manifestation of a bloom is still lagging behind what is needed to support effective management. We outline a framework that integrates trait theory and ecosystem modeling to improve bloom prediction. This framework builds on the concept that the phenology of blooms is determined by the dynamic interaction between the environment and traits within the phytoplankton community. Phytoplankton groups exhibit a collection of traits that govern the interplay of processes that ultimately control the phases of bloom initiation, maintenance, and collapse. An example of process‐trait mapping is used to demonstrate a more consistent approach to bloom model parameterization that allows better alignment with models and laboratory‐ and ecosystem‐scale datasets. Further approaches linking statistical‐mechanistic models to trait parameter databases are discussed as a way to help optimize models to better simulate bloom phenology and allow them to support a wider range of management needs.more » « lessFree, publicly-accessible full text available August 13, 2026
-
Abstract Identifying the scaling rules describing ecological patterns across time and space is a central challenge in ecology. Taylor's law of fluctuation scaling, which states that the variance of a population's size or density is proportional to a positive power of the mean size or density, has been widely observed in population dynamics and characterizes variability in multiple scientific domains. However, it is unclear if this phenomenon accurately describes ecological patterns across many orders of magnitude in time, and therefore links otherwise disparate observations. Here, we use water clarity observations from 10,531 days of high‐frequency measurements in 35 globally distributed lakes, and lower‐frequency measurements over multiple decades from 6342 lakes to test this unknown. We focus on water clarity as an integrative ecological characteristic that responds to both biotic and abiotic drivers. We provide the first documentation that variations in ecological measurements across diverse sites and temporal scales exhibit variance patterns consistent with Taylor's law, and that model coefficients increase in a predictable yet non‐linear manner with decreasing observation frequency. This discovery effectively links high‐frequency sensor network observations with long‐term historical monitoring records, thereby affording new opportunities to understand and predict ecological dynamics on time scales from days to decades.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Coevolution is common and frequently governs host–pathogen interaction outcomes. Phenotypes underlying these interactions often manifest as the combined products of the genomes of interacting species, yet traditional quantitative trait mapping approaches ignore these intergenomic interactions. Devil facial tumor disease (DFTD), an infectious cancer afflicting Tasmanian devils (Sarcophilus harrisii), has decimated devil populations due to universal host susceptibility and a fatality rate approaching 100%. Here, we used a recently developed joint genome-wide association study (i.e., co-GWAS) approach, 15 y of mark-recapture data, and 960 genomes to identify intergenomic signatures of coevolution between devils and DFTD. Using a traditional GWA approach, we found that both devil and DFTD genomes explained a substantial proportion of variance in how quickly susceptible devils became infected, although genomic architectures differed across devils and DFTD; the devil genome had fewer loci of large effect whereas the DFTD genome had a more polygenic architecture. Using a co-GWA approach, devil–DFTD intergenomic interactions explained ~3× more variation in how quickly susceptible devils became infected than either genome alone, and the top genotype-by-genotype interactions were significantly enriched for cancer genes and signatures of selection. A devil regulatory mutation was associated with differential expression of a candidate cancer gene and showed putative allele matching effects with two DFTD coding sequence variants. Our results highlight the need to account for intergenomic interactions when investigating host–pathogen (co)evolution and emphasize the importance of such interactions when considering devil management strategies.more » « less
-
Abstract Background Transmissible cancers lie at the intersection of oncology and infectious disease, two traditionally divergent fields for which gene expression studies are particularly useful for identifying the molecular basis of phenotypic variation. In oncology, transcriptomics studies, which characterize the expression of thousands of genes, have identified processes leading to heterogeneity in cancer phenotypes and individual prognoses. More generally, transcriptomics studies of infectious diseases characterize interactions between host, pathogen, and environment to better predict population-level outcomes. Tasmanian devils have been impacted dramatically by a transmissible cancer (devil facial tumor disease; DFTD) that has led to widespread population declines. Despite initial predictions of extinction, populations have persisted at low levels, due in part to heterogeneity in host responses, particularly between sexes. However, the processes underlying this variation remain unknown. Results We sequenced transcriptomes from healthy and DFTD-infected devils, as well as DFTD tumors, to characterize host responses to DFTD infection, identify differing host-tumor molecular interactions between sexes, and investigate the extent to which tumor gene expression varies among host populations. We found minimal variation in gene expression of devil lip tissues, either with respect to DFTD infection status or sex. However, 4088 genes were differentially expressed in tumors among our sampling localities. Pathways that were up- or downregulated in DFTD tumors relative to normal tissues exhibited the same patterns of expression with greater intensity in tumors from localities that experienced DFTD for longer. No mRNA sequence variants were associated with expression variation. Conclusions Expression variation among localities may reflect morphological differences in tumors that alter ratios of normal-to-tumor cells within biopsies. Phenotypic variation in tumors may arise from environmental variation or differences in host immune response that were undetectable in lip biopsies, potentially reflecting variation in host-tumor coevolutionary relationships among sites that differ in the time since DFTD arrival.more » « less
-
China has made a concerted effort to successfully improve water quality of rivers, but lake water quality has not improved. Lakes require controls on both catchment external nutrient loads and in-lake internal loads, where nature-based solutions are coupled with engineered systems to achieve the United Nations Sustainable Development Goals (SDGs).more » « less
-
Emerging infectious diseases pose one of the greatest threats to human health and biodiversity. Phylodynamics is often used to infer epidemiological parameters essential for guiding intervention strategies for human viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). Here, we applied phylodynamics to elucidate the epidemiological dynamics of Tasmanian devil facial tumor disease (DFTD), a fatal, transmissible cancer with a genome thousands of times larger than that of any virus. Despite prior predictions of devil extinction, transmission rates have declined precipitously from ~3.5 secondary infections per infected individual to ~1 at present. Thus, DFTD appears to be transitioning from emergence to endemism, lending hope for the continued survival of the endangered Tasmanian devil. More generally, our study demonstrates a new phylodynamic analytical framework that can be applied to virtually any pathogen.more » « less
An official website of the United States government
